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Abstract

A linear, unconditionally convergent modal vibration response modelling technique is presented. Material
damping is simulated using the augmented Hooke's law introduced by Dovstam [Dovstam, K., 1995. Augmented

Hooke's law in frequency domain. A three-dimensional, material damping formulation. International Journal of
Solids and Structures 32, 2835±2852]. The method is based on continuous, elastic, displacement modes and
vibrational stress modes, dual to the traditional displacement modes. The stress modes are implicitly used to derive

a generally convergent modal response model in generally damped cases with boundary traction excitation. The real
eigenvalue problem de®ning the stress modes is formulated, and explicit frequency domain modal system equations
of motion, for computation of needed stress and displacement mode coe�cient spectra, are derived. Introduced

parameters, accounting for the interdependence of the di�erent modal contributions (modal coupling) to the
response, are computable from known material properties (elastic and damping) and geometry by post processing
results from three-dimensional, standard ®nite element (FE), eigenvalue calculations. Practical means for predicting
whether modal coupling will occur or not are thus provided, as well as means for predicting damped resonance

frequencies. When applied to an isotropic material, the new response model, for small damping, approaches the
modal receptance model recently introduced and discussed by Dovstam [Dovstam, K., 1997. Receptance model
based on isotropic damping functions and elastic displacement modes. International Journal of Solids and

Structures 34, 2733±2754]. A close agreement between direct FE calculations and response simulations using the
proposed method is obtained for a highly damped three-dimensional cantilever test plate. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Despite the explosive development in computational power over the last 20 years, it is still
prohibitively time consuming to compute vibration responses using detailed ®nite element (FE) models
and direct frequency by frequency matrix inversion. This is especially true in analysis commonly
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encountered in vibroacoustical design problems. When available, the use of modal methods, therefore,
provides a tremendous reduction of computation time for computations over wide frequency bands.

In general, vibrational modes in real physical systems are coupled in the sense that the corresponding
mode coe�cients are interdependent, and consequently, not easily computable directly from explicit
formulae. As a result, general damped vibration responses have hitherto not been possible to analyse
using generally convergent modal methods. The objective behind the work presented in this paper has,
therefore, been to derive a modal method for simulation and prediction of generally damped linear
vibrations.

The starting point of the present paper is the modal vibration response model, producing good
approximations for cases having small but otherwise general damping and weakly interdependent mode
coe�cients, recently introduced by the author, Dovstam (1997). The present method resolves the
inherent convergence problems associated with computation of strains by termwise di�erentiation of
modal displacement series. It is shown that the noted convergence problems may be avoided by
introduction of continuous stress modes, which are dual to the displacement modes. The concept of
continuous, dual mode ®elds and their properties have, to the knowledge of the author, not until now
been discussed and used in the literature.

The proposed method is based on the augmented Hooke's law (AHL) (Dovstam, 1995) and on the
crucial observation that dual stress modes only implicitly have to be used in computation of responses
for boundary traction excitation. The new method is convergent also in cases with very high damping
and highly interdependent (coupled) mode coe�cients. A bene®t of the approach is that means for
predicting whether mode coupling do occur are provided.

The proposed modal response model allows an explicit separation of elastic and geometry dependent
modal properties from the dissipation and damping properties of vibrating continuous solids and
structures. This is of great importance in experimental, indirect damping estimation based on measured
responses, as discussed by Dovstam (1997), Dovstam and Dalenbring (1997) and Dalenbring (1999).

The main contributions of the present paper are:

1. an unconditionally convergent method for modal expansion of vibrational displacement ®elds in
linear generally damped bodies and structures subjected to speci®ed excitation forces (tractions) on
the boundary,

2. formulation of the real eigenvalue problem for continuous, elastic, stress modes, dual to classical,
continuous, displacement modes used in traditional modal expansion,

3. explicit frequency domain modal equations of motion for computation of approximations of the
correct generalised Fourier coe�cient functionals (stress and displacement mode coe�cient spectra) in
the case of excitation de®ned by forces on the boundary,

4. introduction of modal coupling parameters computable from given constitutive material properties
(elastic and damping) and geometry by post processing results from three-dimensional FE
approximation and standard eigenvalue calculations and

5. a novel theory for modal expansion of damped vibrational stress and strain ®elds based on
continuous elastic stress modes.

The new method is veri®ed on numerical test cases, which in a previously reported analysis (Dovstam,
1997) showed poor or very bad convergence for an uncoupled modal response model. The agreement
between direct FE calculations and simulations using the new method is extremely good.

The paper starts with a brief discussion on localised boundary forces and corresponding receptance
spectra. Following this, the governing linearised continuum mechanical equations of motion are
presented. Elastic modes and mode series expansion of both displacements and stresses are then
discussed. Finally, the new modal response model and the speci®c numerical test cases are presented.

Throughout the text, the Laplace transform, with respect to the time variable t, of a ®eld or function
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is denoted by a tilde above the particular parameter. The complex Laplace (frequency) variable is
denoted by s and interpreted as s � a� io, where o � 2pf is the current circular frequency in rad/s,
while f is the vibration frequency in Hz. The current spatial point is denoted by x, and the studied
vibrating body is assumed to occupy a three-dimensional volume O with boundary @O in three-
dimensional space. The mass density ®eld of the body is r � r�x�: If not de®ned directly in the text,
notations used may be found in Appendix A (De®nitions) and Appendix B (Inner products and L2

convergence).

2. Vibration response due to boundary forces

The transformed frequency domain displacement ®eld Äu in a vibrating body can always be
approximated using a modal expansion

Äu1
XN
m�1

cm� Äu�w�m��x� �1�

once the mode shapes w�m��x� and mode coe�cients cm� Äu�, m � 1, 2, 3, . . . ,N have been computed
(Dovstam, 1997, 1998a, 1998b). Generally, the mode coe�cients are mutually interdependent and in
such cases the modal contributions, i.e. the di�erent terms in Eq. (1), are said to be coupled. It should
be noted then, for linear vibrations, that coe�cient spectra cm� Äu� � cF

m� Äu� corresponding to a vibration
®eld Äu caused by a speci®c excitation F � a � Fa � b � Fb, where a and b are complex numbers, depend
linearly on F and thus cF

m� Äu� � a � cFa
m � Äu� � b � cFb

m � Äu�:
The key issue, which is the main objective of the present paper, is to compute the mode coe�cients

cm� Äu�, for linear but generally damped vibrations, when given as input the material properties (elastic
and damping), the geometry and the excitation forces.

Cases of special interest are typically when the body is excited by a localised three-dimensional
dynamic force F(t ) distributed over a small part @ eO of the boundary @O: In such cases, which are
common in vibroacoustics, the vibrational displacement responses are described by receptances, which
are de®ned as the ratio of a displacement component spectrum ~ui�x, s� and the complex amplitude
~F�s� � ~F�xe, s� � ÄF�s�=j ÄF�s�j of the excitation force spectrum ÄF�s�: The receptance RiF corresponding to
the force spectrum ÄF at a point xe on the boundary is thus de®ned as:

RiF � RiF�x, xe, s� �
~ui�x, s�
~F�xe, s�

�2�

and according to Eq. (1):

RiF1
XN
m�1

w
�m�
i �x� � cF

m
� Äu�= ~F �3�

Due to the interdependence between the mode coe�cients, it is in general not possible to write down a
simple explicit expression for the relation between each single mode coe�cient spectrum cm� Äu� and the
excitation ÄF: Therefore, cm� Äu� and cF

m� Äu�= ~F have to be computed as solutions to a novel system of
coupled modal equations of motion as will be shown below.
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3. Governing equations in frequency domain

3.1. Equations of motion

Assuming zero body forces and zero initial conditions for the displacement ®eld u � u�x, t� and the
corresponding velocity ®eld Çu � Çu�x, t�, Laplace transformation of the linearised continuum mechanical
equations of motion yields the following matrix equation:

ÿDT
�

ÄT
�
� s2r Äu � 0 x 2 O �4�

for a continuum occupying the volume O in three-dimensional space at isothermal conditions.
The stresses T are de®ned according to the frequency domain AHL (Dovstam, 1995; 1999) as:

ÄT � ÃH ÄE x 2 �O � O [ @O �5�

where the constitutive, material matrix ®eld ÃH is de®ned by its elastic, zero frequency part H and the
augmenting, complex and frequency dependent, anelastic part HD as:

ÃH � H�x� �HD�x, s� �6�

The inverse AHL

ÄE � ÃC ÄT �7�

is de®ned by the complex, inverse (compliance) material matrix ®eld

ÃC � ÃH
ÿ1 �

h
ÃH�x, s�

iÿ1
�8�

and in analogy with Eq. (6) the augmenting, anelastic part of the inverse law is de®ned as:

CD � ÃCÿ C �9�

Here, C is the elastic, inverse Hooke's material matrix ®eld:

C � Hÿ1 � �H�x��ÿ1 �10�

Introducing Eq. (5) into the equation of motion, (4), leads to:

ÃL� Äu� � s 2r Äu � 0 x 2 O �11�

The frequency dependent, second order, spatial di�erential operator matrix ÃL is de®ned as:

ÃL�v� � ÿDT
�

ÃHD�v�
�

x 2 O �12�

for smooth enough three-dimensional, complex vector ®elds v. The domain of de®nition of the operator
ÃL is important and depends on the boundary conditions imposed on the ®elds in the function space of
which v is assumed to be a member of.

The boundary conditions for Äu are assumed to be mixed displacement and traction conditions:

Äu � Ãu x 2 @uO �13�
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Ätn � N ÃHD� Äu� � Ãt x 2 @ tO � @Oÿ @uO �14�
where Ãu � Ãu�x, s� and Ãt � Ãt�x, s� are frequency and position dependent, three-dimensional vector
functions, speci®ed on the boundary @O � @ uO [ @ tO: For free bodies, not ®xed in space, the point set
@uO may be empty.

After operation with the strain operator D on Eq. (4) divided by r, and using the constitutive relation
(7), the partial di�erential equation for the transformed, six-dimensional, stress ®eld ÄT is obtained as:

Q
�

ÄT
�
� s2 ÃC ÄT � 0 x 2 O �15�

where, for smooth enough six-dimensional complex vector ®elds V, the second order, spatial di�erential
operator matrix ®eld Q is de®ned as:

Q�V� � ÿD
�
rÿ1DT�V�

�
x 2 O �16�

A time domain, elastic counterpart to Eq. (15) was formulated by Ignaczak (1963), and it is worth
noting that Eq. (15) expresses the pure stress formulation of the linearised equations of motion
represented by Eqs. (4), (5), (7) and (11).

The di�erential operator Q, in contrast to ÃL, is self adjoint, irrespective of the material properties of
the studied body. For details concerning domains (suitable function spaces including boundary
conditions for Äu and ÄT� of partial di�erential operators, such as ÃL and Q, the reader is referred to, e.g.,
Oden (1979) or Reddy (1986).

Boundary conditions for ÄT, equivalent to the conditions (13) and (14), are de®ned by the mixed
conditions (natural and essential, respectively, for ÄT):

DT
�

ÄT
�
� s2r Ãu, x 2 @uO �17�

Ätn � N ÄT � Ãt, x 2 @ tO � @Oÿ @uO �18�
It should be noted that the essential condition (13) imposed on the displacements Äu is equivalent to a
natural condition on the stresses ÄT: Likewise the natural condition (14) for Äu is equivalent to an
essential condition on the stresses ÄT: This is of importance in modal series expansion of Äu and ÄT, as
essential boundary conditions require special attention, if the modal expansions should be convergent in
a way useful for simulation of vibration responses.

3.2. Isotropic material properties

The constitutive matrix H of the isotropic, generalised Hooke's law may be written (Appendix A) as:

H � GHG � lHl �19�
and the corresponding isotropic, AHL is given by:

ÃH � G
ÿ
1� dG�s�

�
HG � l

ÿ
1� dl�s�

�
Hl �20�

where dG�s� and dl�s� are damping functions (Dovstam, 1997) corresponding to the elastic LameÂ 's
moduli G (shear modulus) and l: The damping functions are material properties and vanish at zero
frequency. The augmenting parts GdG�s� and ldl�s� are completely independent of the elastic zero
frequency properties and thus related to dissipation and material damping only. Details and alternative
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damping function models may be found in Dovstam (1995, 1997, 1999) and Dovstam and Dalenbring
(1997).

4. Elastic modes and mode series expansion

4.1. Introduction

The modal response model presented in Dovstam (1997) was based on Gurtins general results
(Gurtin, 1972) concerning elastic displacement modes (classical, continuous, real normal modes) and
their completeness in L3

2�O� (Appendix B). The pertinent theoretical background, summarised in
Dovstam (1997, 1998a, 1998b), is also given here for reference purposes. Further, and more detailed,
discussions of completeness and L2�O� convergence may be found in Mikhlin (1964) and Oden (1979).

Continuous, elastic, stress modes and corresponding stress mode series are de®ned in Section 4.3. It is
shown in Appendix C that the new type of stress mode series converges in L6

2�O� (Appendix B) due to
the completeness in L3

2�O� of the displacement modes.
In the following, only the mixed boundary condition case with zero (essential) conditions on Äu � Ãu � 0

in Eq. (13)) and the special case with pure traction (natural) boundary conditions for the displacement
®eld Äu �@uO empty in Eqs. (13) and (14)) will be discussed.

Non-zero displacement boundary conditions and modal expansions suitable for such cases are not
included here, but will be discussed by the author in a forthcoming paper.

4.2. Displacement mode series

As already mentioned above, the Laplace transformed displacement ®eld Äu in a vibrating body may,
due to the completeness of the modes fw�m�g1m�1, always be represented by a generalised Fourier series
and expressed as:

Äu�x, s� � ÄuN�x, s� � Äures�x, s� x 2 O �21�

ÄuN�x, s� �
XN
m�1

cm� Äu�w�m��x� x 2 O �22�

where Äures�x, s� � Äu�x, s� ÿ ÄuN�x, s� is the point wise error of the (truncated series) approximation ÄuN:
The three-dimensional vector ®elds w�m� are traditionally identi®ed as undamped, elastic, natural
(normal) modes of vibration and ÄuN is said to be a modal expansion corresponding to those modes. The
modes are thus real, i.e., all component ®elds w

�m�
k � w

�m�
k �x� are real valued. The s-dependent coe�cients

cm� Äu� are complex valued linear functionals of the Laplace transformed displacement ®eld Äu:

cm� Äu� �
ÿ

Äu, rw�m�
�
=am m � 1, 2, . . . �23�

am �
ÿ
w�m�, rw�m�

�
> 0 m � 1, 2, . . . �24�

where (u, v) denotes the inner product in the function space L3
2�O� (Appendix B). Finally, the modes

w�m� are orthogonal (mass orthogonal) in the sense that �dmr is the Kronecker delta):ÿ
w�m�, rw�r�

�
� amdmr m, r � 1, 2, . . . �25�

K. Dovstam / International Journal of Solids and Structures 37 (2000) 5413±54455418



The fundamental problem in derivation of response models based on modal expansion is to explicitly
calculate and predict the modal coe�cients cm� Äu� corresponding to a given vibrational excitation.
Generally, the di�erent modal contributions cm� Äu�w�m��x� in Eq. (22) are interdependent due to vibration
damping, here represented by the anelastic material matrix HD in Eq. (6). This is commonly referred to
as coupling or modal coupling which here is used synonymously to denote interdependence between the
modal coe�cients cm� Äu�: Note that this form of coupling should not be confused with lack of
orthogonality of the mode shapes w�m� which are always mass-orthogonal as expressed by Eq. (25).

Certain boundary conditions are assumed to be satis®ed by the modes, such that for all modal indices
r and mÿ

NHE�r�, w�m�
�
@� 0 �26�

where E�r� � D�w�r��: The case of special interest here, in connection to the mixed conditions (13) and
(14) on Äu, is the homogeneous, mixed conditions:

w�m� � 0 x 2 @uO �27�

t�m�n � NHD
�
w�m�

�
� 0 x 2 @ tO � @Oÿ @uO �28�

Using FE techniques, it is easy and straightforward to compute good approximations of the continuous
mode ®elds w�m��x� when the geometry and the elastic zero frequency material properties H of the body
are known. However, in general, there exists no explicit formula for computation of the coe�cients
cm� Äu�, unless the entire ®eld Äu�x, s� is known and, in which case, the de®nition (23) could be used, cf.
Dovstam, 1997. In cases where unknown responses should be predicted an alternative to the de®nition
(23) is thus needed.

Take the inner product of the equation of motion (11) and w�m� and integrate the result by parts using
Eq. (B8) given in Appendix B. Then, introducing the constitutive material ®eld (6), using the de®nition
(23) and homogeneous boundary conditions (13) for Äu, non-zero traction conditions (14) and the
conditions (27) and (28) for the modes, it is obtained that:

am
�
s2 � o2

m

�
cm� Äu� � hHD ÄE, E

�m�i � ~F
�m�
@ �29�

which is the non-homogeneous and anisotropic, counterpart to Eq. (25) in Dovstam (1997). The
complex function ~F

�m�
@ is the modal force spectrum which for generally distributed dynamic boundary

forces is de®ned by a surface integral (Appendix B):

~F
�m�
@ �

ÿ
Ätn, w�m�

�
@�

�
@O

Ätn � w�m� d@O �30�

where tn is the time domain traction ®eld de®ned by the external forces.
Eq. (29) points out the need of a generally convergent modal expansion of the inner product hHD ÄE,

E�m�i: In traditional modal analysis, the strain ÄE is usually approximated using term by term
di�erentiation of a truncated modal expansion, corresponding to Eq. (22), assuming that ÄE �
D� Äu�1PN

m�1 cm� Äu�E�m�: However, it turns out, as will be shown later, that a correct modal expansion of
the strain ®eld ÄE does not have the same Fourier coe�cients cm� Äu� as the displacement ®eld Äu, and that
the strain ®elds E�m� do not constitute a proper basis for ÄE in the function space L6

2�O� (Appendix B).
Derivation of the generalised Fourier coe�cients cm� Äu� for the displacement response Äu may start

from the equation of motion, (11), or from the ``elastic'' partial di�erential equation (no sum on m ):
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L
�
w�m�

�
ÿ o2

m � rw�m� � 0 x 2 O �31�
de®ning the modes w�m�, which constitute a set of complete (Gurtin, 1972) basis vector ®elds in the
function space L3

2�O� (Appendix B). Here, the ``elastic'', second order, di�erential operator L is de®ned
by the elastic material matrix ®eld H � H�x� as:

L�w� � ÿDT�HD�w�� x 2 O �32�

4.3. Stress mode series

The stress ®eld ÄT in a vibrating body can, as shown in Appendix C, be represented by a generalised
Fourier series, convergent in L6

2�O�, as:

ÄT1 ÄTN �
XN
m�1

gm� ÄT�S�m��x� �33�

where the vector ®elds S�m� are six-dimensional real, elastic, stress modes. The frequency dependent
coe�cient functionals gm� ÄT� may, in an analogous way as cm� Äu�, be expressed as complex valued
functionals depending on elastic (undamped) modal parameters (de®ned by the zero frequency elastic
moduli and the geometry), the damping and the modal boundary conditions.

The generalised stress Fourier coe�cients gm� ÄT� are de®ned as:

gm� ÄT� � h
ÄT, CS

�m�i
Lm

m � 1, 2, . . . �34�

Lm � hS�m�, CS�m�i m � 1, 2, . . . �35�
The stress modes S�m� satisfy, and are de®ned by, the ``elastic'' boundary value problem:

Q
�
S�m�

�
ÿ �o2

m � CS�m� � 0 �36�
�
rÿ1DT

�
S�m�

�
, NS�r�

�
@
� 0 all m, r �37�

They satisfy the orthogonality conditions:

hS�m�, CS�r�i � Lm � dmr all m, r �38�
and are assumed to constitute a complete basis for the Hilbert space L6

2�O� (see Appendix B and the
comment on convergence in Appendix C).

4.4. Dual stress and displacement modes

Both sets of modes w�m�, (22), and S�m�, (33), are ``classical'' in the sense that they are continuous and
continuously di�erentiable as many times as needed. They may also be approximated, to any needed
degree of accuracy, using FE modelling techniques. It is assumed here that the mode sets w�m� and S�m�

correspond to the same elastic material and the same geometry and also to the same boundary
partitions (sub-surfaces) @uO and @ tO � @Oÿ @uO:
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In the modal method proposed below, two duality relations between the displacement modes w�m� and
the stress modes S�m� are crucial. Using Eqs. (31), (36), (16) and (32), together with spatial
di�erentiation, it is always possible to write the duality relations as (Appendix D):

w�m� � ÿoÿ2m rÿ1DT
�
S�m�

�
�39�

S�m� � HE�m� � HD
�
w�m�

�
�40�

and as a consequence of Eq. (26), it follows also thatÿ
w�m�, NS�r�

�
@� 0 �41�

for all indices r and m. Displacement modes w�m� and stress modes S�m� satisfying Eqs. (39)±(41) are here
said to be dual modes.

The boundary conditions for the modes are further said to be compatible with the displacements Äu
when the modes w�m� satisfy the same homogeneous, displacement boundary conditions as Äu on @uO:
The Äu-compatibility of the modes may be expressed as (noting that @O � @uO [ @ tO):ÿ

Äu, t�m�n

�
@� 0 �42�

which is assumed to be ful®lled also in cases when @uO is empty. It should be noted then that

t�m�n � NS�m� � NHE�m� � NHD
�
w�m�

�
�43�

for dual modes S�m� and w�m�: The relationship S�m� � HE�m�, (40), and partial integration further results
in (cf. Eqs. (B9), (B10), (25), (31) and (32)):

hS�m�, CS�r�i � hS�m�, E�r�i � hHE�m�, E�r�i � amo2
m � dmr �44�

which should be compared to Eq. (38).
Taking the inner product of Eq. (11) and w�m�, integrating by parts using Eq. (B8) and using the

de®nition (23), it is derived that (no sum on m ):

h ÃH ÄE, E�m�i � s2amcm� Äu� �
ÿ
Ätn, w�m�

�
@ �45�

Due to Eqs. (5), (34), (38), (44) and the duality E�m� � CS�m�, Eq. (45) is equivalent to:

s2amcm� Äu� � am � o2
m � gm� ÄT� � ~F

�m�
@ �46�

for dual, Äu-compatible mode ®elds w�m� and S�m�: The displacement coe�cients cm� Äu� are thus directly
related to, and computable from, the stress coe�cients gm� ÄT� and the modal forces ~F

�m�
@ de®ned by the

vibrational surface tractions. Eq. (46) should be compared to Eq. (29) which in fact is equivalent to Eq.
(46) for dual, Äu-compatible modes.

It will be shown in the following that the stress mode coe�cients gm� ÄT� are generally interdependent.
A consequence of this and Eq. (46) is that modal coupling de®ned as interdependence between the
displacement coe�cients cm� Äu� is equivalent to mutual interdependence of the stress mode coe�cients.
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5. Coupled mode coe�cient functionals

5.1. Background

A crucial point in the present paper is the derivation of the stress coe�cients gm� ÄT�: When the
vibrational excitation is de®ned by boundary tractions alone, or combined with zero displacement
conditions (part of the boundary ®xed in space), it is possible to derive modal system equations which
may be used for approximation of the stress mode coe�cients gm� ÄT� without explicitly knowing the stress
modes. Once the gm� ÄT� are known, the cm� Äu� may then be computed using Eq. (46).

5.2. Stress mode system equations

Substituting ÃH ÄE by ÄT in Eq. (45), results in:

s2amcm� Äu� � h ÄT, E�m�i � ~F
�m�
@ �47�

Unconstrained bodies, allowed to move freely in space due to the excitation, always have six ``rigid'',
zero frequency modes with zero strain and, therefore, also zero stress. It thus follows from Eq. (47), with
vanishing E�m�, that the corresponding mode coe�cients are given directly and explicitly as cm� Äu� �
~F
�m�
@ =�ams2�:
Further, taking the inner product of Eq. (31) and Äu and integrating by parts, using Eqs. (32) and

(B7), and applying the conditions (41), for Äu-compatible modes:

hH ÄE, E�m�i � am � o2
m � cm� Äu� �48�

Then, with ÄE � ÃC ÄT in Eq. (48), elimination of cm� Äu� using Eqs. (47) and (48) results in:

o2
m � h ÄT, E�m�i � s2 � hH ÃC ÄT, E�m�i � o2

m � ~F
�m�
@ �49�

To proceed, a relation between the coe�cients gm� ÄT� and the modal forces ~F
�m�
@ is required. After modal

expansion of ÄT in Eq. (49) using the de®nition (33) and utilising orthogonality properties (44) and the
properties (41) and (42) of compatible modes and displacements, it is thus obtained for each m = 1, 2,
3, . . . (no sum on m ):

amo4
m � gm� ÄT� � s2 �

X1
r�1
hH ÃCHE

�m�
, E�r�i � gr� ÄT� � o2

m � ~F
�m�
@ �50�

These relations de®ne an in®nite dimensional system of equations characterising the stress mode
coupling, that is the interdependence between the stress mode coe�cient functionals, caused by the
anelasticity represented by CD � ÃCÿ C:

It is noted here that Eq. (50) corresponds to an unconditionally convergent modal expansion of the
inner product hHD ÄE, E�m�i in Eq. (29). Also, the inner product hHD ÄE, E�m�i may be expressed as
amo2

m�gm� ÄT� ÿ cm� Äu��, showing that the coe�cient functionals gm� ÄT� and cm� Äu� are identical when the
anelasticity is zero.

It is further observed that:

H ÃCH � H�HCDH �51�
which is used below to simplify the Eq. (50).
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Because the non-zero stress modes only, i.e., modes with om > 0, are of interest here, it follows that
due to Eqs. (50), (51) and (44) for those modes (no sum on m ):

am �
ÿ
o2

m � s2
� � gm� ÄT� � s2

o2
m

�
X1
r�1
hHCDHE�m�, E�r�i � gr� ÄT� � ~F

�m�
@ �52�

When written in (in®nite) matrix form, this is equivalent to:

266664
B11 B12 B13 B14 � � �
B21 B22 � � � � �
� � � � � � �
� � � Bmr � � �
� � � � � � �

377775
2666664
g1� ÄT�
g2� ÄT�
�
gr� ÄT�
�

3777775 �
266666664

~F
�1�
@

~F
�2�
@

�
~F
�m�
@

�

377777775
�53�

where the non-symmetric system matrix elements Bmr are given by (no sum on m ):

Bmr �

8>>>><>>>>:
am

�
o 2

m � s2 �
�
1� 1

amo2
m

� hHCDHE�m�, E�m�i
��

, r � m

s2

o2
m

� hHCDHE�m�, E�r�i, r 6�m
�54�

The complex, frequency dependent, modal strain energy integrals hHCDHE�m�, E�r�i determine completely
the coupling between the stress modes and may be computed using FE techniques and partial sti�ness
matrices (cf. Dovstam, 1997). In applications of course only a ®nite, but large enough, number, N, of
modes are used in the modal expansions Eqs. (22), (33) and (53) is approximated by the N ``®rst''
equations and modes only, m, r � 1, 2, 3, . . ., N (not counting the zero frequency, rigid, modes in the
case of an unconstrained body).

Thus, the fundamental prediction problem, how to compute the coe�cient functionals cm� Äu� in Eqs.
(1) and (22) in generally damped cases, is satisfactorily answered by the Eqs. (53) and (54) combined
with Eq. (46). Solving Eqs. (53) and (54) for the stress coe�cients gm� ÄT�, allows for solution of the
displacement coe�cients cm� Äu� from Eq. (46) when the vibration excitation is given in terms of the
boundary tractions Ätn which de®ne the modal forces ~F

�m�
@ according to Eq. (30).

From the discussion above, it should be clear that the modal expansion (33) of the current stress ®eld
ÄT and the duality between the stress modes and displacement modes are necessary and crucial for
derivation of the correct coe�cient functionals cm� Äu�:

5.3. Damped resonances and modal shift functions

In the special case of fully isotropic properties, i.e., isotropic elasticities and damping:

HCDH � a � GHG � b � lHl �55�
where the complex, frequency dependent and possibly also position dependent material functions a �
a�s� and b � b�s� may be expressed in terms of the isotropic material damping functions dG�s� and dl�s�
(Section 3.2). It may be derived that:
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a � ÿ dG�s�
1� dG�s� �56�

b � ÿ
dl�s� �

�
dG�s�

�2
�1� 3l=2G� �

dl�s� � dG�s�
�1� 2G=3l��

1� dG�s�
� � �1� dG�s�

�1� 3l=2G� �
dl�s�

�1� 2G=3l�
� �57�

In the case of fully isotropic and homogeneous properties, ®nally (no sum on m ):

Bmr �

8>><>>:
am

n
s2 � �1� dm�s�

�� o2
m

o
, r � m

s2 � c�s� � gmr

o2
m

, r 6�m
�58�

dm�s� � wma�s� �
ÿ
1ÿ wm

�
b�s� �59�

c�s� � a�s� ÿ b�s� � dl�s� ÿ dG�s��
1� dG�s�

� � �1� 1� dG�s�
1� 3l=2G

� dl�s�
1� 2G=3l

� �60�

gmr � hGHGE�m�, E�r�i � 2

�
O
Ge�m�ik e�r�ik dO �sum on i, k� �61�

wm �
gmm

amo2
m

�no sum on m� �62�

Here, the parameters gmr are partial, isotropic, elastic modal strain energies corresponding to the
isotropic shear modulus G. The parameters wm are isotropic modal weight factors which determine the
contributions of the material functions a � a�s� and b � b�s� to the complex, mode dependent functions
dm�s�: It is interesting to note that, according to Eq. (62), the weights wm are de®ned by the undamped
resonance frequencies om and the diagonal terms of the partial strain energy matrix �gmr). Thus, it is
obvious that the energies gmr, and also the weights wm, depend, indirectly, on geometry, the mass
distribution, the elasticities and the (modal) boundary conditions. Therefore, all modal parameters om,
wm, gmr and dm�s� are structural properties, and the modal functions dm�s� are di�erent for di�erent
geometries even if the corresponding bodies or structures have identical material properties. However,
the functions dG�s�, dl�s�, a�s� and b�s� are only related to the material.

FE approximation of modal weight factors wm and strain energies gmr was discussed by the author
already in Dovstam (1997). In Dovstam (1997) though, these parameters were used in a di�erent
context, connected to the uncoupled modal receptance model discussed therein.

The ``damped'' circular resonance frequency omd, corresponding to the undamped frequency om, is
now de®ned as:

omd � om������������������������������������
1� Re

�
dm�iomd �

�q �63�
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which is a natural de®nition when looked at the real part of the diagonal elements in Eq. (58). The
damped resonance peak of the response contribution from mode number m is thus ``shifted'', by the
damping, from the undamped circular frequency om to the damped frequency omd: Due to this
frequency shifting e�ect, the functions dm�s� are in the following denoted modal shift functions. As
already mentioned above, the shift functions are structural properties and depend not only on the
material damping alone. According to Eqs. (58) and (63), it is also clear that large modal frequency
shifts may occur even if the modal coupling is small. In the general case, the modal shift functions are
given by:

dm�s� � 1

amo2
m

hHCDHE�m�, E�m�i no sum on m �64�

Furthermore, at a resonance s � iomd are, according to Eqs. (63) and (58), the diagonal elements of the
modal system matrix purely imaginary:

�Bmm �s�iomd
� ÿiamo2

md Im
�
dm�iomd �

�
no sum on m �65�

In analogy to this, damped circular resonance frequencies in general anisotropic and non-homogeneous
cases are de®ned as those frequencies where the diagonal elements in Eqs. (53) and (54) are purely
imaginary.

5.4. Modal coupling

Traditionally, and also here, modal coupling is regarded as interdependency between the displacement
mode coe�cients cm� Äu� in the modal expansion (22). Based on the new theory presented above, it is
possible, though, to establish a deeper understanding of the cause of modal coupling occurring for
vibrating bodies with continuous properties.

Here the isotropic modal coupling matrix �Cmr� is de®ned as:

Cmr � gmr

amo2
m

no sum on m �66�

and the o�-diagonal terms of this matrix determine, together with the material functions a � a�s� and
b � b�s�, according to Eqs. (58)±(60), completely the stress mode coupling in the case of fully isotropic
and homogeneous material properties.

For small stress mode coupling (small o�-diagonal modal system matrix elements s2 � c�s� � am � Cmr,
r 6�m and thus weak interdependence between the stress mode coe�cients), it is possible to derive, from
Eqs. (46), (53), (54), (58), the explicit expression (no sum on m ):

cm� Äu�1
~F
�m�
@ �s�

am
�
s2 � o2

m=
ÿ
1� dm�s�

�� small stress mode coupling �67�

for the displacement mode coe�cient functional cm� Äu�: It should be noted that the approximation (67)
represents the correct way of neglecting modal coupling, correct also for arbitrarily high damping.
Modal coupling is thus equivalent to coupling between the stress modes, i.e., to mutual interdependence
between the stress mode coe�cients gm� ÄT� caused by the inelasticity CD: Explicit expressions analogous
to Eq. (67) but corresponding to more general cases (anisotropic, inhomogeneous but still continuous H
and CD� may be derived from Eqs. (46), (53) and (54), assuming that the o�-diagonal system matrix
elements Bmr�s�, r6�m may be neglected.
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In the general case, when stress mode coupling may not be neglected, the displacement coe�cient
functional cm� ~u�, due to Eqs. (46) and (53), can be expressed as (no sum on m ):

cm� Äu� �
�
1ÿ amo2

mImm�s�
�

ams2
� ~F
�m�
@ �s� ÿ

�
om

s

�2X
r6�m

Imr�s� � ~F
�r�
@ �s� �68�

Fig. 1. Diagonal (......) and maximum (� � �) coupling matrix elements Cmr for test plate.

Table 1

AHL material damping parameters for the test plate

AHL parameters

�n � 1, 2, 3)

Case A (Fig. 9, Dovstam, 1997) Case B (Fig. 8, Dovstam, 1997) Case C (new case, dl � 0)

bn=2p (Hz) 10, 100, 800 10, 100, 800 10, 150, 1000

jn (Pa) j1 � 18,974; j2 � 25,298;

j3 � 37,947

j1 � 12,000; j2 � 16,000;

j3 � 24,000

j1 � j2 � j3 � 0

mn (Pa) m1 � m2 � m3 � 750 m1 � m2 � m3 � 7500 m1 � 12,649; m2 � 20,555;

m3 � 37,947
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where the complex functions Imr�s� denote the elements of the inverse I�s� � �B�s��ÿ1 of the modal system
matrix B(s ) in Eq. (53). It is obvious that all modal receptance functions ÿ�om=s�2 � Imr�s� with r 6�m
have to be small, compared to the factor �1ÿ amo2

m � Imr�s��=�a2
ms� of the ®rst term on the right-hand side

of Eq. (68), to make it possible to neglect the modal coupling for mode number m. As expected, Eqs.
(67) and (68) give identical results when the o�-diagonal functions ÿ�om=s�2 � Imr�s� are either zero or
neglected.

The expression (67), and the appearance of the modal shift function dm�s�, should be compared to the
corresponding expression in Dovstam (1997) derived for uncoupled cases, i.e., cases with uncoupled
mode coe�cients. For small damping, i.e. small jdG�s�j and jdl�s�j, it may be shown that:

1

�1� dm�11ÿ dm � d2
m ÿ d3m � � � �11� dm �O

ÿjd 2
Gj
��O

ÿjd 2
l j
� �69�

where dm � dm�s� denotes the modal damping function introduced in Dovstam (1997). Thus, for small
stress mode coupling combined with small damping, the new correctly coupled model and the old
``uncoupled'' model discussed in Dovstam (1997) correspond to approximately the same displacement
mode coe�cients. For proportional damping, i.e. when dG�s� � dl�s�, the coe�cients cm� Äu� of the new and
the old uncoupled model turn out to be identical.

6. Numerical test case

6.1. Introduction

In order to test the new coupled modal receptance model, receptances RiF, de®ned by the Eqs. (2), (3),
(30), (46), (53) and (55)±(62), have been computed and compared to corresponding receptances
calculated by direct FE response analysis, i.e., frequency by frequency inversion of the (complex and
frequency dependent) global dynamic sti�ness matrix of the FE model. The direct FE response analysis

Table 2

Elastic (undamped) frequencies fm � om=2p, isotropic weight factors wm and modal frequency shift Dm � �fmd ÿ fm�=fm, predicted
by Eq. (63), for modes with damped resonance frequency fmd � omd=2p below 700 Hz

Mode number, m Elastic frequency, fm (Hz) Modal weight, wm Dm, Case A (%) Dm, Case B (%) Dm, Case C (%)

1 3.96 0.91 0.90 0.90 5.95

2 24.8 0.91 2.35 7.18 19.3

3 53.4 0.99 0.33 7.82 34.8

4 67.5 0.92 2.20 9.90 36.9

5 69.6 0.91 2.92 10.1 36.6

6 136.7 0.90 3.47 12.8 55.3

7 162.0 0.99 0.48 11.5 72.4

8 226.6 0.90 3.90 14.5 69.8

9 275.8 0.99 0.66 12.8 93.3

10 339.3 0.90 4.32 15.8 83.1

11 389.3 0.93 2.86 15.2

12 397.6 0.98 0.97 13.9

13 475.0 0.89 4.72 17.1

14 530.6 0.97 1.32 15.0

15 633.3 0.89 5.07

16 676.6 0.96 1.72
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was done using the AHL elements implemented, cf. Dovstam (1997) in ASKA Acoustics, GoÈ ransson
(1988). All modal simulations were done using MATLAB1.
As numerical test object was chosen the same cantilever, rectangular plate as used for test of the

uncoupled, modal receptance model presented in Dovstam (1997). The dimensions (standard SI units are
used here) of the test plate were: thickness h � 0:004 m, width b � 0:070 m and length L � 0:500 m. The
long straight edges were oriented parallel to the x-axis �x � x1� with the ends at x � 0 and x � L,
respectively, and the displacements were constrained to zero in the yz-plane �y � x2, z � x3� at the ®xed
end at x � 0: The z-axis was oriented orthogonal to the plate faces in the thickness direction.

6.2. Elastic and modal data

The elastic material parameters and the mass density used for the studied plate were chosen as
(estimated for a real polystyrene test piece at room temperature 208C):

G � 0:8824� 109 Pa
l � 2:2689� 109 Pa
r � 1050 kg/m3

Fig. 2. Isotropic damping function dG and isotropic material function a � ÿdG=�1� dG� for case A (Table 1). Real parts (solid line)

and imaginary parts (dashed line).
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where G and l correspond to the Young's modulus EY � 2:4� 109 Pa and Poisson's ratio n � 0:36:
In both the direct FE response calculations and in the calculation of FE approximations of the

undamped, modal parameters (natural frequencies om, displacement modes w�m��x� and partial, isotropic

modal strain energy integrals gmr), the plate was modelled using isoparametric, volume elements (20

nodes per element) with one element through the plate thickness, 14 elements in the y-direction and 100

elements along the x-direction. Thus, a total number of 1400 three-dimensional elements (size: 0.004 �
0.005� 0.005 m3), with three displacement degrees of freedom per node.

The computed modal data used here are exactly the same as those presented and used in Dovstam

(1997). Here, though, the isotropic strain energy integrals, gmr, are used in a new coupled modal model.

The natural frequencies, fm � om=2p, number 1, 16, 100 and 200, taken as examples, were calculated to

f1 � 3:96 Hz, f16 � 677 Hz, f100 � 6642 Hz and f200 � 12,243 Hz, respectively. Isotropic weight factors

wm and isotropic coupling matrix elements Cmr, cf. Eqs. (62) and (66), were calculated for the 200 lowest

modes of the plate. The maximum wm-value, corresponding to an almost pure torsional mode, was w3 �
0:99 for mode number 3, while the minimum value was w58 � 0:85 for mode number 58. The largest

positive and negative coupling matrix elements Cmr were C1, 103 � 15:1 and C1, 106 � ÿ47:5, respectively,
for all 200 modes, showing the largest coupling between stress mode coe�cients 1 and 106. The

Fig. 3. Isotropic damping function dl and isotropic material functions b and c � aÿ b for case A (Table 1). Real parts (solid line)

and imaginary parts (dashed line).
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maximum and minimum elements in row number 2 of the coupling matrix, representing coupling
between mode 2 and the other modes, were C2, 106 � 6:25 and C2, 107 � ÿ5:22, respectively, showing that
also mode number 2 was most strongly coupled to mode 106. All remaining coupling matrix elements,
in rows number 3 to 200, were much smaller. The wm factors (dots) and the maximum absolute value of
the o�-diagonal elements (circles) in each row m of the coupling matrix Cmr� are shown in Fig. 1.

6.3. Damping and predicted frequency shifts

To simulate homogeneous isotropic, non-proportional damping in the chosen material, hypothetical
damping functions dl and dG were de®ned by the relations (cf. Dovstam, 1995, 1997, 1998b and Section
3.2):

dG�s� �
X3
n�1

2m2
n

Gan
� sÿ
s� bn

� �70�

Fig. 4. Isotropic damping functions dG and dl for case B (Table 1). Real parts (solid line) and imaginary parts (dashed line).
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dl�s� �
X3
n�1

ÿ
3j2

n � 4jnmn
�

lan
� sÿ
s� bn

� �71�

using the AHL material damping parameter values bn, mn and jn in Table 1. The dissipation parameters
an were all taken equal to unity (Dovstam, 1997) and the choice of three damping processes with the
particular relaxation frequencies bn in Table 1, was made in order to generate a high enough damping in
the frequency range below 700 Hz, where the cantilever test plate has a su�ciently high number of
undamped natural frequencies (16 below 700 Hz, cf. Table 2) to be suitable for test of the new modal
model.

Three cases, each with di�erent but homogeneous, isotropic material damping, were studied. Two
of the cases, cases A and B (Table 1), were also discussed in Dovstam (1997); while the third
case, case C (Table 1), is a new case with extremely high damping but, nevertheless, very small
modal coupling in the studied frequency range. Common to all three cases is a very high material
damping level which results in both relatively small (case A) and extremely high (case C) structural
modal damping.

The di�erent material damping functions dG�s� and dl�s� and the corresponding new material

Fig. 5. Isotropic material funtions a � ÿdG=�1� dG�, b and c � aÿ b for case B (Table 1). Real parts (solid line) and imaginary

parts (dashed line).
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functions a�s�, b�s� and c�s� � a�s� ÿ b�s� (cf. Eqs. (56), (57) and (60)) are presented for each case
in Figs. 2 and 3 (case A), Figs. 4 and 5 (case B) and Figs. 6 and 7 (case C).

From Fig. 2, it is obvious that dG�s� and the material function a�s� in case A are very small and could
be neglected compared to dl�s�, b�s� and c�s� � a�s� ÿ b�s� presented in Fig. 3. In case B, as can be seen
in Figs. 4 and 5, the two damping functions dG�s� and dl�s� and all the material functions a�s�, b�s� and
c�s� � a�s� ÿ b�s� have real and imaginary parts of about the same order of magnitude. Thus, in case B
both material functions a�s� and b�s� will contribute to the modal damping in the modal system
equations (53), cf. Eqs. (56)±(60). In case C, the damping function dl�s� is identically zero, while the real
and imaginary parts of dG�s� are very large, Fig. 6. The material function a�s� dominates the
contribution to the modal shift functions dm�s� and the system matrix elements Bmr�s� in Eq. (58) in case
C, Fig. 7. This follows from Eq. (59) and the fact that the modal weights wm are all larger than 0.85 for
the studied test plate.

It should be noted here that for vanishing dl�s�, the isotropic material function b�s� is given by:

�
b�s��

dl�0� ÿ
�
dG�s�

�2
1� 3l=�2G� � �2� 3l=�2G�� � dG�s� � �dG�s��2 �72�

Fig. 6. Isotropic damping function dG for case C (Table 1). Real part (solid line) and imaginary part (dashed line).

K. Dovstam / International Journal of Solids and Structures 37 (2000) 5413±54455432



where 3l=2G � 3:86 for the test plate. Thus, it follows that, for vanishing dl�s�, b�s� may be neglected

when dG is small but not when dG is large.

Typical modal shift functions dm�s�, de®ned by Eq. (59), are presented in Fig. 8 for case A and three

di�erent wm-values �wm � 0:85, 0.90 and 0.99). In connection to the shift functions, it is interesting to

note that ÿIm�dm�iomd �� could be used as a measure of the structural (modal) damping for mode number

m. From Fig. 8, it is clear that the modal damping in case A should be small, which is also con®rmed

by the responses (Figs. 9 and 10) calculated for case A.

Modal frequency shifts, predicted using the relationship (63), for the three cases A, B and C are given

in Table 2 for modes with predicted damped resonance frequencies below 700 Hz. As can be seen, the

frequency shifts in case C are extremely large for all but the two lowest modes. Further, the shifts

predicted for case A agree closely with the peaks in the computed displacement responses (cf. Table 2

and the receptance in Figs. 9 and 10). Good agreement between predicted shifts and observed peak

frequencies is obtained also in case B, even though the peaks in case B, due to the high modal damping,

are ``overlapping'' and the corresponding frequencies not so easily identi®ed (cf. Table 2 and the

receptances in Fig. 11). In case C, no pronounced sharp peaks are observed, Fig. 12, due to very high

damping.

Fig. 7. Isotropic material functions a � ÿdG=�1� dG�, b and c � aÿ b for case C (Table 1). Real parts (solid line) and imaginary

parts (dashed line).
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6.4. Modal and direct FE response simulations

All modal and direct FE response simulations presented here are magnitude, receptance spectra jR3F3
j

(Section 2) corresponding to a dynamic (idealised) point force with unit spectrum ~Fz � ~F3 � 1 and ~F1 �
~F2 � 0� in the z-direction at the excitation point xe � L, ye � b, ze � h: As a consequence of the
idealised point force used as excitation, the calculated direct FE responses correspond to a larger
number of excited modes than in the modal simulation which has to be truncated after a number, N, of
modes, cf. Eq. (3). This has to be taken into account when comparing results from direct FE and modal
simulations, especially when comparing responses at the excitation point.

Responses in the z-direction at the excitation point and at the opposite corner x � L, y � 0, z � h are
presented for case A. For cases B and C, the response at the opposite free corner is presented.

Direct FE responses were computed in the frequency range 200±700 Hz with frequency resolution
Df � 2:51 Hz, while the modal response simulations were computed using frequency resolution Df � 1
Hz and a number of N � 100 modes. Computed and used displacement modes were visually inspected,
and judged to be good approximations of the corresponding, unknown but desired, continuous, elastic
normal modes.

Fig. 8. Modal shift functions dm � wm � a� �1ÿ wm� � b for case A (Table 1). Modal weight factor values wm � 0:99, 0.90 and 0.85.

Real parts (solid line) and imaginary parts (dashed line).
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The responses calculated for case A are presented in Fig. 9 (response at free corner) and Fig. 10
(response at excitation point), while the response (at free corner) in case B is presented in Fig. 11. The
highly damped response in case C is presented in Fig. 12 (response at free corner).

As already mentioned, cases A and B were also studied in Dovstam (1997), where the old uncoupled
receptance model, though, showed bad convergence for case B and very bad for case A. For all cases A,
B and C, modal simulations using the old uncoupled modal receptance model are shown here, for
reference, as dashed lines in Figs. 9±12.

The simulations using the new, unconditionally, convergent modal technique (using Eqs. (2), (3), (30),
(46), (53) and (55)±(62)) agree extremely well with corresponding direct FE calculations (solid, thin line
in the diagrams) in all cases A, B and C, as can be seen in Figs. 9±12. Some minor di�erences can be
seen in Fig. 10 in the vicinity of the deep valleys at about 460, 510 and 615 Hz. These di�erences,
though, are attributed to the modal truncation at N � 100 modes and the point force excitation in the

Fig. 9. Absolute value of receptance R33 � R3F for case A (Table 1). Response in z � x 3-direction in upper corner at free end due

to force excitation in same direction in the opposite upper corner at the free end. Solid line, response computed using direct FE.

Dotted line, response calculated, using the new correctly coupled modal model, according to Eqs. (2), (3), (46), (53) and (58).

Dashed line, modal response, calculated using the uncoupled model in Dovstam (1997). All modal calculations with N � 100 modes

and modal forces ~F
�m�
@ � w

�m�
3 �xe�: Frequency range 200±700 Hz.
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modal model while using consistent force excitation and (of course) no corresponding truncation in the
direct FE calculations.

Uncoupled modal responses have also been computed using the approximation (67), valid for small
stress mode coupling. For the same number of modes, this uncoupled modal model results in the same
response as the fully coupled modal model with the exception for the response presented in Fig. 12 (at
free corner in case C). As can be seen in Fig. 12, neither the old uncoupled model (Dovstam, 1997) nor
the new uncoupled model (67) agree completely with the calculated direct FE response. Thus, Fig. 12
indicates that there is some modal coupling present in case C, for the studied frequencies, which has to
be taken into account to get good agreement between the direct FE and modal simulations.

Finally, as evident from the presented Figs. 9±12, the frequency shifts due to the damping, discussed
in Sections 5.3 and 6.3 above, are predicted extremely well by the new modal technique in all cases A, B
and C.

Fig. 10. Absolute value of receptance R33 � R3F for case A (Table 1). Response in z � x 3-direction at the excitation point in upper

corner at free end. Solid line, response computed using direct FE. Dotted line, response calculated, using the new correctly coupled

modal model, according to Eqs. (2), (3), (46), (53) and (58). Dashed line, modal response, calculated using the uncoupled model in

Dovstam (1997). All modal calculations with N � 100 modes and modal forces ~F
�m�
@ � w

�m�
3 �xe�: Frequency range 200±700 Hz.
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7. Summary

An unconditionally convergent method for modal expansion of vibrational displacement ®elds in
linear, but otherwise generally damped, continuous bodies and structures is proposed. The method and
the corresponding modal response model is based on continuous displacement modes and implicit use of
continuous, dual stress modes.

The new results are needed and crucial in cases where the di�erent matrix elements of the anelastic
part HD in the AHL, ÃH � H�HD, have di�erent frequency dependence; while they, at the same time,
cannot be considered as small compared to corresponding elasticities in the generalised Hooke's law
material matrix ®eld H.

The real eigenvalue problem de®ning the continuous, elastic stress modes, equivalent and dual to
classical, continuous, normal displacement modes used in traditional modal expansion, is formulated;
and frequency domain modal (system) equations of motion for computation of needed generalised

Fig. 11. Absolute value of receptance R33 � R3F for case B (Table 1). Response in z � x 3-direction in upper corner at free end due

to force excitation in same direction in the opposite upper corner at the free end. Solid line, response computed using direct FE.

Dotted line, response calculated, using the new correctly coupled modal model, according to Eqs. (2), (3), (46), (53) and (58).

Dashed line, modal response, calculated using the uncoupled model in Dovstam (1997). All modal calculations with N � 100 modes

and modal forces ~F
�m�
@ � w

�m�
3 �xe�: Frequency range 200±700 Hz.
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Fourier coe�cient functionals (stress and displacement mode coe�cient spectra) are derived for cases
with boundary traction excitation.

Introduced modal coupling parameters are computable from known material properties (elastic
moduli, damping and mass distribution) and geometry by post processing results from three-
dimensional, standard FE (displacement) eigenvalue calculations.

When the damping and coupling approach zero, the new method approaches the uncoupled modal
model discussed in Dovstam (1997).

The results are explicitly applied to the case with homogeneous, isotropic damping, and means are
provided for predicting damped resonance frequencies and for predicting whether coupling will occur or
not.

The method is veri®ed on the numerical test cases presented in Dovstam (1997), which showed poor
or very bad convergence for the uncoupled modal receptance model. The agreement between direct FE

Fig. 12. Absolute value of receptance R33 � R3F for case C (Table 1). Response in z � x 3-direction in upper corner at free end due

to force excitation in same direction in the opposite upper corner at the free end. Solid line, response computed using direct FE.

Dotted line, response calculated, using the new correctly coupled modal model, according to Eqs. (2), (3), (46), (53) and (58).

Dashed line, modal response, calculated using the uncoupled model in Dovstam (1997). Dashed-dotted line, modal response calcu-

lated using Eq. (67), neglecting modal cross coupling, and thus assuming small stress mode coupling. All modal calculations with

N � 100 modes and modal forces ~F
�m�
@ � w

�m�
3 �xe�: Frequency range 200±700 Hz.
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calculations and response simulations using the new modal method is extremely good in all cases
studied.

The proposed modal response model makes it possible to separate elastic and geometry dependent
modal properties from the dissipation and damping properties of a vibrating solid or structure which is
very important in experimental damping estimation based on response measurements (Dovstam, 1997;
Dovstam and Dalenbring, 1997).

The new theory provides also an improved theoretical basis for experimental modal analysis (Ewins,
1986) and re®nement of hybrid modal analysis (Dovstam, 1998a).
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Appendix A. De®nitions

The Cartesian matrix representations u, T and E of the displacement ®eld, the symmetric stress and
(in®nitesimal) strain tensor ®elds, respectively, are de®ned as:

u � u�x, t� � � u1 u2 u3
�T �A1�

T � T�x, t� � � s11 s22 s33 s12 s23 s31
�T �A2�

E � E�x, t� � � e11 e22 e33 2e12 2e23 2e31
�T �A3�

where ui, sik and eik are Cartesian vector and tensor components. Likewise the matrix representations of
the modal displacement ®eld number m and the stress mode ®eld number m, respectively, are de®ned as:

w�m� � w�m��x� �
h
w
�m�
1 w

�m�
2 w

�m�
3

iT

�A4�

S�m� � S�m��x� �
h
s�m�11 s�m�22 s�m�33 s�m�12 s�m�23 s�m�31

iT

�A5�

The current in®nitesimal strains eik and the in®nitesimal modal strains e�m�ik are de®ned, respectively, as:

eik � 1

2

�
@ui
@xk
� @uk
@xi

�
�A6�
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e�m�ik �
1

2

"
@w�m�i

@xk
� @w

�m�
k

@xi

#
�A7�

The strain vectors E and E�m�, corresponding to those strains, may be determined from the matrix ®elds
u and w�m� as:

E � D�u� �A8�

E�m� � D
�
w�m�

�
�A9�

where the ®rst order, partial di�erential operator matrix D is the Cartesian 6� 3-matrix representation:

D � D� � �

2666666664

@

@x1
0 0

@

@x2
0

@

@x3

0
@

@x2
0

@

@x1

@

@x3
0

0 0
@

@x3
0

@

@x2

@

@x1

3777777775

T

�A10�

of the three-dimensional, spatial, symmetric gradient operator (Gurtin, 1972).
The Cartesian matrix representation N � N�x� of the unit normal vector ®eld n � n�x� is de®ned as:

N �
24 n1 0 0 n2 0 n3
0 n2 0 n1 n3 0
0 0 n3 0 n2 n1

35 �A11�

Cartesian traction vector components �tn�k are de®ned by unit normal components ni and symmetric,
Cartesian stress tensor components sik as:

�tn�k� sikni sum on i �A12�
which in matrix form is equivalent to:

tn � NT �A13�
The only non-zero elements of the real 6 � 6 matrices Hl and HG in the isotropic, elastic generalised
Hooke's law matrix H � lHl � GHG are:

�Hl�ik� 1 i, kR3 �A14�

�HG �ii� 2, 1RiR3; �HG �ii� 1, 4RiR6 �A15�

Appendix B. Inner products and L2�O� convergence

The L3
2�O� � L2�O� � L2�O� � L2�O� inner product (u, v) is de®ned (Oden, 1979) as:

�u, v� �
�
O

u � v� dO �
�
O

ÿ
u1v
�
1 � u2v

�
2 � u3v

�
3

�
dO �B1�
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where v� denotes the complex conjugate of the complex (having complex valued component ®elds),
three-dimensional vector ®eld v. The natural norm in L3

2�O�, induced by the inner product (u, v), is
de®ned as:

k Äuk �
������������
� Äu, Äu�

p
�B2�

for the complex vector ®eld Äu:
A sequence fung1n�1 converges to u in the sense of the L3

2�O� norm if (cf. Mikhlin, 1964; Gurtin, 1972;
Oden, 1979):

lim
n41kuÿ unk � lim

n41
���������������������������������
�uÿ un, uÿ un�

p � 0 �B3�

The inner product �u, v�@ for vector ®elds on the boundary @O is de®ned as:

�u, v�@�
�
@O

u � v� d@O �B4�

Analogously, the L6
2�O� � L3

2�O� � L3
2�O� inner product hE, Vi of two six-dimensional vector ®elds E and

V is de®ned as:

hE, Vi �
�
O

ÿ
E1V

�
1 � E2V

�
2 � � � � � E6V

�
6

�
dO �B5�

Here, V� denotes the complex conjugate of the vector ®eld V. All stress and strain vector ®elds discussed
are assumed to belong to L6

2�O�:
For arbitrary three- and six-dimensional ®elds v and A, it may be shown by partial integration

(Gauss' theorem) that:ÿ
DT�A�, v

�
� hA, D�v�i � �NA, v�@ �B6�

hD�v�, Ai �
ÿ
v, DT�A�

�
� �v, NA�@ �B7�

In particular, it may be derived for the operator ÃL that:ÿ
ÃL� Äu�, v

�
� h ÃHD� Äu�, D�v�i ÿ

ÿ
N ÃHD� Äu�, v

�
@ �B8�

and for the ``elastic'' operator L �La is the adjoint of L):

�L�u�, v� � hHD�u�, D�v�i ÿ �NHD�u�, v�@ �B9�

�L�u�, v� � �u, La�v�� � �u, NHD�v��@ÿ�NHD�u�, v�@ �B10�
where u and v are arbitrary, complex, three-dimensional vector ®elds in L3

2�O�: The adjoint La is
formally de®ned as:

La�v� � ÿDT�HD�v�� � L�v� �B11�
Due to a well known property of Hilbert spaces (related to termwise integration, see e.g. Reddy, 1986)

h ÄTN, Xi4h ÄT, Xi �B12�
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for any X in L6
2�O� if ÄTN4 ÄT in L6

2�O�: This important fact is utilised in the modal expansion of
anelastic strain contributions.

Appendix C. Convergence of ÄTN in L6
2�O�

Utilising the orthogonality properties (44) for dual, u-compatible modes, it follows from Eqs. (33),
(46) and (B12) that:

h ÄTN, C ÄTNi �
XN
m�1

1

amo2
m

j ~F�m�@ ÿ s2amcm� Äu�j2R
XN
m�1

1

o2
m

�
1

am
j ~F�m�@ j2 � jsj4 � amjcm� Äu�j2 � 2jsj2

� j ~F�m�@ jjcm� Äu�j
�

�C1�

Now, due to Parseval's theorem for discrete complex Hilbert spaces `2 (cf. e.g. Oden, 1979), it may be
shown that

P1
m�1 j ~F

�m�
@ jjcm� Äu�j is ®nite if the in®nite sums

P1
m�1

1
am
j ~F
�m �
@

om
j2 and

P1
m�1 amj cm� Äu�om

j2 both are
®nite. It follows thus from Eq. (C1), when ÄuN converges to Äu in L3

2�O� (which it always does, due to
completeness of the displacement modes w�m�), that ÄTN converges to ÄT in the energy norm k � kC:

h ÄTN, C ÄTNi 4 h ÄT, C ÄTi � k ÄTkC �C2�
when N goes to in®nity if the in®nite sum

P1
m�1

1
am
j ~F
�m�
@

om
j2 is bounded. In practice, j ~F�m�@ j may be neglected

for m larger than some mmax (due to short spatial wave lengths of all modes w�m� with high enough
mode number m combined with locally distributed but spatially smooth excitation). The sums in Eq.
(C1) with terms containing ~F

�m�
@ are, therefore, ®nite and bounded, and ÄTN converges thus, in practice,

to ÄT in energy as de®ned by Eq. (C2).
The elastic compliance matrix ®eld, C � Hÿ1, is further assumed to be bounded below (cf. the

ellipticity conditions of linear elasticity, Oden, 1979) and there exists, therefore, a real positive constant
aC such that for all X in L6

2�O�:

kXkC �
�����������������
hX, CXi

p
raC � kXkL6

2
�O� �C3�

where the norm in L6
2�O� is k � kL6

2
�O� �

����������h�; �ip
: It thus follows that:

k ÄTNkL6
2
�O�R

1

aC

� k ÄTNkC �
1

aC

����������������������
h ÄTN, C ÄTNi

q
�C4�

As a consequence, in all realistic applications, the modal, stress series approximation converges to the
correct ÄT in L6

2�O� when ÄuN converges to Äu in L3
2�O�:

Appendix D. Dual elastic modes

By de®nition, an elastic stress mode S�m� is the solution to the eigenvalue problem:

Q
�
S�m�

�
� �o2

m � CS�m� �D1�
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�
rÿ1DT

�
S�m�

�
, NS�r�

�
@
� 0 �D2�

where �om is the circular eigenfrequency of mode number m.
Analogously, for an elastic displacement mode w�m� with corresponding circular eigenfrequency om and

elastic (generalised Hooke) material matrix H � Cÿ1, the following equivalent relationships can be
written down (cf. the de®nitions of the second-order operators L and Q in the main text, Eqs. (32) and
(16), respectively):

L
�
w�m�

�
� o2

m � rw�m� �D3�

ÿDTHD
�
w�m�

�
� o 2

m � rw�m� �D4�

ÿD

n
rÿ1DTHD

�
w�m�

�o
� o2

m � D
�
w�m�

�
�D5�

Q�HE�m� � � o2
m � E�m� �D6�

and, due to the assumption C � Hÿ1, from Eq. (D6)

Q�HE�m� � � o2
m � CHE�m� �D7�

According to Eq. (D1), it follows from Eq. (D7) that ÅS
�m� � HE�m� is a stress mode with the same

eigenvalue o2
m as the displacement mode w�m�: Due to Eq. (D4) and the boundary conditions (26) in the

main text, it follows ®nally thatÿ
NHE�r�, w�m�

�
@� ÿoÿ2m �

�
NÅS
�r�
, rÿ1DT

�
ÅS
�m���

@
� 0 all r, m �D8�

Thus, the modes w�m� and ÅS
�m� � HE�m� � HD�w�m�� not only correspond to the same positive eigenvalue

o2
m but also satisfy equivalent boundary conditions (26) and (D2).
Alternatively, starting with Eq. (D1), the equivalent relationships are obtained:

HQ
�
S�m�

�
� �o2

m � S�m� �D9�

ÿHD

h
rÿ1DT

�
S�m�

�i
� �o2

m � S�m� �D10�

ÿDTHD

h
rÿ1DT

�
S�m�

�i
� �o2

m � DT
�
S�m�

�
�D11�

which are all equivalent to Eq. (D1). After introduction of the displacement ®elds

v�m� � rÿ1DT
�
S�m�

�
�D12�

it follows from Eq. (D11) and the de®nition of L, (32), that

L
�
v�m�

�
� �o2

m � rv�m� �D13�
According to Eq. (31), in the main text, and Eq. (D13), it is thus clear that v�m� � rÿ1DT�S�m�� is a
displacement mode with the same eigenvalue �o2

m as the stress mode S�m�: Further, due to Eqs. (D10) and
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(D12) and the boundary conditions (37), it follows that:�
NS�r�, rÿ1DT

�
S�m�

��
@
� ÿ �oÿ2r �

�
NHD

�
v�r�

�
, v�m��

�
@
� 0 all r, m �D14�

Thus, the ®elds v�m� and S�m� correspond to the same positive eigenvalue �o 2
m and satisfy equivalent

boundary conditions (37) and (D14).
The ®elds v�m� are of course related to the displacement modes w�m�: Comparing Eq. (D4) and the

de®nition (D12), it follows, thus, that the displacement mode w�m� is related to the stress mode S�m� as:

w�m� � ÿoÿ2m rÿ1DT
�
S�m�

�
�D15�

which is equivalent to the relation:

S�m� � HE�m� � HD
�
w�m�

�
�D16�

Due to the duality relations (D15) and (D16), the mode sets w�m� and S�m� are in the present paper
denoted dual (elastic) modes.

From Eq. (B9) and the assumption C � Hÿ1, it follows ®nally, for S�r� � HE�r� and S�m� � HE�m� that:

hS�m�, CS�r�i � hS�m�, CHE�r�i � hS�m�, E�r�i � hHE�m�, E�r�i

�
�

L
�
w�m�

�
, w�r�

�
�
ÿ
NHE�m�, w�r�

�
@� o2

m �
ÿ
rw�m�, w�r�

�
� ÿt�m�n , w�r�

�
@ �D17�

After applying the boundary conditions (26) in the main text

hS�m�, CS�r�i � hHE�m�, E�r�i � am � o2
m � dmr � Lm � dmr �D18�

and it follows for dual stress and displacement modes that:

Lm � am � o2
m �D19�

References

Dalenbring, M., 1999. Damping function estimation based on measured vibration frequency responses and ®nite-element

displacement modes. J. Mechanical Systems and Signal Processing 13, 547±569.

Dovstam, K., 1995. Augmented Hooke's law in frequency domain. A three-dimensional, material damping formulation. Int. J.

Solids Structures 32, 2835±2852.

Dovstam, K., 1997. Receptance model based on isotropic damping functions and elastic displacement modes. Int. J. Solids

Structures 34, 2733±2754.

Dovstam, K., Dalenbring, M., 1997. Damping function estimation based on modal receptance models and neural nets.

Computational Mechanics 19 (4), 271±286.

Dovstam, K., 1998a. Real modes of vibration and hybrid modal analysis. Computational Mechanics 21 (6), 493±511.

Dovstam, K., 1998b. On material damping modelling and modal analysis in structural dynamics. Ph.D. Thesis, Department of

Solid Mechanics, Royal Institute of Technology, Stockholm, Sweden.

Dovstam, K., 1999. Augmented Hooke's law based on alternative stress relaxation models. To be submitted.

Ewins, D.J., 1986. Modal Testing: Theory and Practice. Research Studies Press Ltd., Letchworth, England and BruÈ el & Kjaer,

Naeram, Denmark.

Gurtin, M.E., 1972. The linear theory of elasticity. In: FluÈ gge, S., Truesdell, C. (Eds.), Encyclopedia of Physics, Volume VIa/2,

Mechanics of Solids II. Springer, Berlin.

K. Dovstam / International Journal of Solids and Structures 37 (2000) 5413±54455444



GoÈ ransson, P., 1988. ASKA Acoustics. Theory and Applications. In: FFA TN 1988-13. The Aeronautical Research Institute of

Sweden, Stockholm.

Ignaczak, J., 1963. A completeness problem for stress equations of motion in the linear elasticity theory. Archivum Mechaniki

Stosowdnej 15 (2), 225±234.

Mikhlin, S.G., 1964. Variational Methods in Mathematical Physics. Pergamon Press, Oxford.

Oden, J.T., 1979. Applied Functional Analysis. Prentice-Hall, Englewood Cli�s, NJ.

Reddy, J.N., 1986. Applied Functional Analysis and Variational Methods in Engineering. McGraw-Hill, New York.

K. Dovstam / International Journal of Solids and Structures 37 (2000) 5413±5445 5445


